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A theoretical study of vesicles of topological genus zero is presented. The bilayer membranes
forming the vesicles have various degrees of intrinsic (tangent-plane) orientational order, ranging
from smectic to hexatic, that are frustrated by curvature and topology. The field-theoretical model
for these “n-atic” surfaces has been studied before in the low temperature (mean-field) limit. The
work presented here includes the effects of thermal fluctuations. Using the lowest Landau level
approximation, the coupling between order and shape is cast in a simple form, facilitating insights
into the behavior of vesicles. The order parameter contains vortices whose effective interaction
potential is found and renormalized by membrane fluctuations. The shape of the phase space has
a counterintuitive influence on this potential. A criterion is established whereby a vesicle of finite
rigidity may be burst by its own in-plane order, and an analogy is drawn with flux exclusion from
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a type-I superconductor.

PACS number(s): 82.70.—y, 02.40.—k, 68.15.+e, 64.70.Md

I. INTRODUCTION

When amphiphilic molecules (those with hydrophobic
and hydrophilic parts) are dissolved in water, they hide
their aliphatic tails by grouping together and thus as-
semble themselves into structures. Depending on the ge-
ometry and chemistry of the particular surfactant, these
structures may be anything from nanometer-scale mycils
to macroscopic membranes arranged in stacks, bicontin-
uous networks of pipes, or closed surfaces. The litera-
ture on spontaneously self-assembling amphiphiles and
biological and liquid-crystal membranes is vast. See, for
example, [1, 2, or 3].

The research presented here is concerned with bilayer
fluid membranes with internal orientational degrees of
freedom. Fluidity of the membrane refers to the fact
that molecules can move freely within the surface, al-
though perpendicular deformations have an energy cost.
The molecules have no positional crystalline order as the
temperature is above the crystalline-to-fluid transition at
which lattice dislocations proliferate. However, for some
liquid crystals, this is not coincident with loss of orienta-
tional order, which occurs at a higher temperature. Vari-
ous kinds of orientational order are possible. Liquid crys-
tals in the smectic-C phase have carbon-chain tails which
are tilted with respect to the local normal to the surface.
The local mean direction of tilt, projected onto the local
tangent plane of the membrane, gives a two-component
vector order parameter, which disappears at the continu-
ous transition to smectic-A phase, where rotational sym-
metry is restored [4]. Alternatively, the orientational or-
der may be hexatic. In this case, the Kosterlitz-Thouless
(KT) transition at which lattice disclinations proliferate,
destroying the quasi-long-range hexagonal bond orienta-
tional order, is noncoincident with the lower temperature
KT transition at which dislocations proliferate [5]. Near-
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est neighbor bond orientations give a basis for defining
an order parameter, which again has two components
in the local tangent plane. But a sixfold ambiguity in
the choice of nearest neighbors arises from the local six-
fold rotational invariance of the membrane. Mapping the
local tangent plane onto the Argand plane, with some
arbitrary direction chosen for the real axis, allows the
two-component order parameter to be well defined as a
complex number, thus

P(o) = (exp[i6O(o)]) ,

where o is some two-component coordinate defined on
the surface, and © is the bond angle with respect to an
arbitrary coordinate axis. Notice that this definition is
independent of which of the six bonds is chosen, since
rotations of the membrane through 7/3 correspond to a
phase change of 27 in v, or an identity transformation.
Hence, this two-component order parameter has the ap-
propriate sixfold local rotational invariance. A similar
complex order parameter can be defined for the smectic-
C order described above. This has local full-turn invari-
ance only, and magnitude ¥o. Hence it may be mapped
onto a complex field, thus

Ye(o) = (Yo expliO(a)]),

where O gives the orientation of the tail vectors projected
onto the tangent plane. In each case, () denotes a local
thermal average. The notion may be generalized to an
in-plane orientational order parameter with local n-fold
rotational invariance being represented by a complex field

P(o) = (o exp[inO(a))), (1.1)

where O gives the orientation of one of the n principal
directions of order. For smectic and bond-angle order in
liquid crystals, n € {1,2,4,6}. Geometrical arguments
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for this restriction on the possible orders of rotational
symmetry are given in [6].

On a flat membrane, the continuous development of
is well modeled by a Ginzburg-Landau free energy func-
tional of the form

= [+ Julpl + CvP 4, (1)
where dA is an element of area, and r, u, and C are pa-
rameters of the particular conditions of the system being
modeled.

On a flexible membrane, however, the free energy func-
tional is a little more complicated. Let the membrane
be treated as an ideal, two-dimensional, smooth surface.
A Hamiltonian due to Helfrich [7] governs elastic defor-
mations of an isotropic (¢ = 0) fluid membrane. This
Hamiltonian is a functional of the intrinsic and extrinsic
curvatures of the membrane, as defined below. Let R(o)
be the position vector in R® of a point on the surface with
two-dimensional coordinate o = (01,02). The surface
has a metric tensor with components gq.;, = . R - R,
where a and b label the coordinates. The metric has
inverse g%® and determinant g. A covariant curvature
tensor is defined by K., = N - 9,0, R, where N is the lo-
cal unit normal. Note that dot products are evaluated in
R3. Using Einstein summation convention, and the met-
ric and its inverse to lower and raise indices in the stan-
dard way, a more useful curvature tensor is defined thus:
K¢ = g*°Kp,. Its determinant K is the Gaussian curva-
ture of the surface, also called the intrinsic curvature, as
it is experienced by “flatlanders” and other physical en-
tities living within the two-dimensional world of the sur-
face, who are oblivious to the way in which the surface is
embedded in 3-space. Its trace K¢, however, is an extrin-
sic property, which cannot be determined by flatlanders.
[The idea of “flatlanders” was used by E. A. Abbott in
his book Flatland [8]. They are hypothetical beings who
live in a two-dimensional space, and have no conception
of a third dimension.] This quantity is known as the total
curvature, or twice the mean curvature, and is the sum
of the two principal radii of curvature of the surface at
a given point [9]. Helfrich’s Hamiltonian, describing the
elastic properties of a constant area fluid membrane, can
now be expressed as

HHelfrich = /{%N(KZ)2 + ke K}y/gd?o.

Note that ,/gd?’c = dA. The phenomenological con-
stants in this expression are the bending rigidity « and
the Gaussian curvature modulus kg. On a closed surface,
the second term in Eq. (1.3) is a topological invariant,
according to the Gauss-Bonnet formula

/Kd.Az 27X,

(1.3)

where x is the Euler number of the surface [10]. For an
orientable surface of genus (number of “handles”) G, the
Euler number is given by

x =2(1-G).

Hence the dynamics of a membrane of given topology are

not influenced by the second term of Eq. (1.3). What fol-
lows will concentrate on membranes of spherical topology
(genus zero), so this term will be dropped.

The free energy functional governing the dynamics
of n-atic fluid membranes cannot be found by simply
adding together Egs. (1.2) and (1.3), since (1.2) con-
tains a gradient operator, which must be expressed in
terms of coordinates which are no longer flat, but curvi-
linear. The derivatives in the flat-membrane expression
|V)|2 = 8,9* 0,9 + 8y1*8yyp must be replaced by co-
variant derivatives thus: |V|? = DXv*D%), where D,
is of the form 8, — inA, with the connection A defined
such that the free energy is invariant under general co-
ordinate transformations. Clearly, A itself is not coor-
dinate invariant, since 1 has coordinate dependence due
to the arbitrariness of the reference axis for ® in Eq.
(1.1). There is some freedom in the choice of the gauge
field A. Here, A is chosen to be the “spin connection”
A, = e - 0,e3, where e is a unit vector in the direction
of Oy R. Finally, we have the free energy functional for a
closed, n-atic fluid membrane:

Fl$(o), R(o)] = / o y/g{rlb[ + Luly|*

+CDLy* D% + 3x(K3)}  (1.4)
and, since the membrane’s total area is fixed at .A by the
number of incompressibly packed constituent molecules,
there is also a constraint

/ P /g = A (1.5)
The covariant derivatives provide a coupling between or-
der and the shape of the membrane.

So far, the model and formalism are identical to that
used by Park, Lubensky, and MacKintosh in their mean-
field treatment of n-atic fluid membranes of genus zero
(vesicles) [11]. They noted that, not only is n-atic order-
ing partly frustrated by curvature of its two-dimensional
space, making parallelism impossible to achieve, but it is
further frustrated by the spherical boundary conditions.
Orientational order intrinsic to a surface of Euler number
x must have topological defects whose indices sum to Xx.
For instance, smectic-C (vector) order can form defects
(sometimes called vortices) of index 1. Hence, on a sphere
(Euler number 2) and in the absence of any antivortices
(index-1 defects), there must be two defects in a Sm-C
order parameter. At these poles, 1 vanishes smoothly
to avoid infinite gradients. Clearly, an n-atic can form
defects of index 1/n since it can rotate by less than a
full turn in circling a pole, without its phase slipping. So
n-atics form 2n vortices on a sphere, in the absence of
excited vortex-antivortex pairs.

A similar approach to that of Park et al. will be used
in this paper. The small deformations from sphericity of
the n-atic fluid membrane are expressed as a real, scalar
field, and the order parameter as a complex field ¥ as de-
scribed above. The shape deformation field is expanded
in spherical harmonics, and % is expanded in eigenfunc-
tions of the gradient operator. As an approximation,
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the series expansion for v is truncated and only the de-
generate set of lowest-eigenvalue functions are kept. The
same approximation was used by Landau to find the wave
function of an electron in a magnetic field [12], and by
Abrikosov in his treatment of flux lattices in supercon-
ductors [13]. The study diverges from that of Park et al.
when a simple expression is calculated for the coupling
between the two fields. The free energy is cast into a
form which allows the shape fluctuations to be integrated
out exactly, giving renormalized coefficients for the order
parameter. This effectively maps the deformable sphere
problem onto a rigid sphere problem, which is soluble for
the n = 1 case. In Sec. III, the stability of the system is
analyzed to ascertain the conditions under which topo-
logical defects become too expensive, and are excluded
from the membrane in a similar fashion to flux exclusion
from a type-I superconductor. The partition function
and various expectation values for n = 1 are calculated
in Sec. VI, using some special symmetries of the problem.
For other values of n, the system is not soluble, but ap-
proximate expectation values are found in Sec. VII, using
diagrammatic expansion and the Hartree-Fock method,
which gives correct results in the limit of high tempera-
ture.

II. CALCULATION

Using the expression D, = 8, — inA,, it is easy to
show that, on a closed surface,

/dza\/_c_]D‘H/)D;z/)* = —/dza ¥*Do(\/gD%).

Both sides are real for all 1; hence the operator
—g~Y/2D,(/gD?) is Hermitian. Eigenvalues of this op-
erator scale as A. A useful set of orthonormal basis func-
tions is formed by normalized eigenfunctions of this op-
erator on the unit sphere, where \/§d20' = d2, which is
the usual solid angle element (sin 6 df dy in spherical po-
lar coordinates). These functions are sometimes referred
to as “Landau levels.” There are (2n+1) degenerate Lan-
dau levels with the lowest eigenvalue n. If ¢ is expanded
in this complete set of functions then, close to the mean-
field phase transition, the partition function is dominated
by configurations involving only the lowest Landau lev-
els. Hence, in this regime it is a good approximation to
expand v in these complex, degenerate lowest levels only.
Thus the number of degrees of freedom in ¢ is reduced
to 2(2n+1), corresponding to freedom in the positions of
the 2n vortices in the two-dimensional surface, together
with an overall complex amplitude. On the unit sphere,

D,(\/gD*%)
~-~:§_;— = —[0s09 + cosec?6 8,0, + cot 0 9

+2in cosecfcot§ 9, — n? cot? 9].
(2.1)
The lowest eigenfunctions of this operator and similar op-

erators for other gauges are presented in different forms
in [14,15], and [11], and are reexpressed here as

b = (2n+1)!
7V 4n(n+p)l(n—p)!
x sin™*P(0/2) cos™ P (6/2) exp(ipy)

(2.2)

for integer values of p between —n and n. Any function
1 which is a linear combination of these functions obeys
the relation

s = [ncot § — i cosec (8) O, ]1p. (2.3)

Let deviations from sphericity of the vesicle’s shape be
parametrized by a real, dimensionless, scalar field p(o)
in the following way. If the ground-state vesicle shape is
a sphere of radius Ry then, with the origin at the center
of the vesicle,

|R(e)| = [1 + p(&)] Ro. (2.4)

This is a “normal gauge” parametrization, and therefore
carries almost the correct weight in a statistical ensemble
[16]. This point will be readdressed later.

It will emerge that (p?) ~ (|¢|*). Equation (1.4) ap-
proximates the 1 potential by a series expansion, trun-
cated at fourth order. Hence, it is consistent to also
truncate to order p? and |v¥|%p, i.e., the vesicles under
consideration deviate little from spheres. To this order,

Val¥|* = Rsin(6)(1 + 2p)|9|*

and

" Da(,/GD) = nl|? sin 8 -+ 20 10, O
—109p 8,9 + 2n cos(0) ¢ Dgp}.

Applying the relation (2.3) and integrating by parts gives

[ ¥ Da(vaD*yb e = n [ daiuira - vip)
+O(|91?p%),
where V2 = (0509 + cosec?(#) 8,0, + cot(0) 8p] is the

covariant Laplacian. So the expression for the free en-
ergy becomes

F=R: / 4O (r — ro) WIP(1 + 20) + Lulyl*

+7c|$1?(2 + V3)p} + Hielfrich + O(191%),
where

_Cn
RZ°

Te =

It also emerges that |1|> ~ (r — r.) below the mean-field
transition. See Sec. V for more explanation. Further-
more, from the definitions of K2 and p, it follows that

2
Ki=-5-0-p- 3Vie+p*+pVip)
and, from Eq. (1.5),

A =4rR% + R?,/dnp(l +1v3)p,
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since p and Ry are defined in Eq. (2.4) in such a way that
fde =0.
Hence, to O(|1|*), we may write

_ 4mnC
A

re =

and the free energy

ﬂ%d=/ﬂ{£ﬂh—mwf+%WW
~Cnlp[2(2+ V1)p

+6 {2+ pVip+ 1(Vip)*} (2.5)

with the field p unaffected by the fixed area constraint to
this order.

The coupling between the fields ¥ and p, describing
order and shape, has been cast into a very simple form,
using some special properties of the lowest Landau levels
of ¢ in the spherical geometry. Note that a similar re-
striction has not been put on the phase space of p. All
modes of shape fluctuation are available for small ampli-
tude excitation. The remarkable simplicity of Eq. (2.5)
is conducive to further exploration of the properties of
n-atic vesicles, hitherto hindered by unwieldy notations.

It is clear from Eq. (2.5) that the mean-field transition
temperature has been shifted from r = 0 to the lower
temperature r = r. due to the nonzero lowest eigen-
value of the operator in Eq. (2.1) in the spherical ge-
ometry. Hence, ordering is frustrated by the curvature of
the space.

Now let p be expanded in eigenfunctions of the covari-
ant Laplacian V2. These functions are spherical har-
monics Y;™, defined by

VAV = U+ DY

The s-wave (I = 0) harmonic is not included in the series
expansion, since this mode of deformation is already rep-
resented by rescaling Rg in Eq. (2.4). The [ = 1 modes
are also excluded, as F' will turn out to be independent
of them. These three modes describe a positive deforma-
tion on one hemisphere of the vesicle, and negative on the
opposite hemisphere. Hence, they simply correspond to
the three degrees of translational freedom. The complex
coefficients pj,, become the dynamical variables, where

1

p(0,p) = Z Z Pim Y™ (6, ¢)-

=2 m=-—1

The deformation field p is constrained to be real by de-
manding that

Pim = (=1)" Pt —m,

which follows from the identity ¥;™* = (—1)"Y,”™.
As stated earlier, the order parameter field ¢ is ex-
panded in the basis functions given in Eq. (2.2), thus

ar <
Y= 1/j D apty, (2.6)

p=-n

where a, are (2n+ 1) dimensionless, complex, dynamical
variables.

The free energy can now be expressed in terms of the
dynamical variables, thus

* * %k
F=a 2 ayap + E Bparsapayaras
P

P,q;T8
+ Z ’qulma;aqplm + Z Alp?mplmy (27)
P, l,m l,m
where
a=r+ 4WZC, (2.8a)
2mu . ix

/qura = 7 /¢p¢q¢r¢s dQl, (28b)

4mnC * m
Ypqim = 1 t+2)d - 1)/¢p¢qYl dQ, (2.8¢)
Ay = ikl(? - 1)(1+2), (2.8d)

all of which coefficients are real. Indices run over the
intervals —n < p,q,7,s < nand 2 <! < o0 and —I <
m < l. Notice that, as stated earlier, [ = 1 spherical
harmonics contribute to neither the curvature energy nor
the coupling, due to the factors of (I —1).

Notice also that Eq. (2.7) is quadratic in the variables
Pim- Hence, in a partition function defined by

z = /e—F({ap},{pzm})'D[p] I dogda,
q

the integral over all shapes may be done explicitly. But
first, an explicit expression is needed for D[p]. A naive
guess would be D[p|naive = [[4 dp(o), where the prod-
uct is over all two-dimensional coordinates o. But this is
incorrect. As explained in [16], there is a subtle geomet-
rical factor which makes the measure nontrivial. Equa-
tion (2.4) is a normal gauge parametrization. Beginning
from the reference of a sphere, the surface is deformed at
each point normal to itself by an amount p, and each of
the resulting surface configurations is counted with equal
weight. Such a scheme is correct, but does not result from
the naive measure given above, for the following reason.
Once the field p has a finite gradient, further increments
dp are no longer normal to the surface. They are, of
course, normal to the reference surface, but that is not
what we require. This is illustrated by Fig. 1, in which
the reference surface S is deformed along the radial di-
rection 7 by an amount Rgp, to the surface S’, and then
by a further amount Rydp to the surface S”. The latter
deformation is not in the direction of the normal IN to
surface S’. The correct measure is given by

Dlp] = [[7 - N dp(o). (2.9)
Q

So the increment dp, in the direction of the normal to



53 THEORETICAL STUDY OF FLUID MEMBRANES OF . .. 939

FIG. 1. Diagram illustrating that a normal displacement
from surface S to S’, when increased to S, is no longer a
normal displacement.

the reference surface, is projected onto the normal to the
current surface by a dot product of the normals. This
simple geometrical recipe given by Cai et al. [16] can
be arrived at more rigorously by the tricky calculation
of a Faddeev-Popov determinant. Note that the prod-
uct in Eq. (2.9) must be taken over all coordinates in a
coordinate-invariant way. It must be taken over all sur-
face elements. To second order in p, this is equivalent to
a product over all solid angles 2. To this order,

7-N =1-3{(9p)® + cosec’0(d,p)°} .

So the measure becomes

Dlp] = ef 1n{1—%[(89p)2+ cosec”o(a.,,p)"]}dn H dp

— 3[40V p+0(s°) I] do-

Hence the nontrivial part of the measure may be ab-
sorbed into the free energy, leaving the trivial mea-
sure [];,. dp},.dpim. This is achieved by simply adding
11(1 +1) to the expression for A; given in (2.8), which is
equivalent to adding a correction to the value of k, thus

1

K—)E=K+m.

(2.10)

So taking due consideration of the measure has the effect
of increasing the bending rigidity slightly for low harmon-
ics. Since k tends to be > %, and hence deformations are
small in the systems under discussion, « will generally be
used instead of K for ease of calculation in what follows.
But the qualitative effects of the correction (K — x) will
be assessed.

The deformational degrees of freedom py,,, which ap-
pear quadratically in the free energy, can now be inte-
grated out by completing the square, using the identity
Ypgim = (—1)™7Ygpi—m- A new effective free energy, de-

fined by
Z= /e—Feﬂ‘({ap}) Hda;daq, (2.11)
q
is found to be
Fef — aza ap + Z B rsapagaras +Hy, (2.12)

p,q,7,8

where

Bogrs = (2.13)

:qurs -

oo l
Z Z 'rqlm’Ypslm
=2 m=

N

and H, is the free energy of shape fluctuations due to the
Helfrich Hamiltonian alone, given by

A
’HP—ZI [ ( ) j|=C11n'i+C2,

where (; and (, are infinite constants in the continuum
limit. This infinite part of the free energy will henceforth
be renormalized away.

Consider for a moment the coefficients vy,qim, defined
via the integral [ ¢%¢,Y;™"d2. Now, the spherical har-
monic Y™ (8, ¢) is of the form P;™(cos 8) exp(im¢), where
P™ is an associated Legendre function, of the form
sin™ 0 Z bk cos® 6 with constant coefficients b. The
associated ] Legendre functions form a complete, orthogo-
nal set of functions for each value of m. Note also that

Ppbq ox sin?"?0(1 — cos 6)"*9(1+cos 0)" P expi(g—p)p.

It follows that it is possible to write the function ¢; ¢4 as a
finite sum of spherical harmonics, i.e., with some constant
coefficients c, it can be written ¢3¢, = Ef o ]Yp .
Hence ¢;¢q is orthogonal to all spherical harmomcs not
included in this sum. So 7pqm vanishes for [ > 2n, and
the infinite sum in Eq. (2.13) can be replaced by a finite
sum

rqlm’Ypslm

(2.14)

.MH

/qurs ﬁpqn -

Physically, this means that only the modes of deforma-
tion between ! = 2 and ! = 2n couple to the lowest
Landau levels of order.

III. STABILITY ANALYSIS

The original system of orientational order on a fluctu-
ating sphere has now been mapped onto a rigid sphere
problem, in which a, are the only dynamical variables,
by replacing the coupling Bpqrs by the effective coupling
Bgirs> renormalized by shape fluctuations. The free en-
ergy closely resembles that of a superconducting film,
penetrated normally by magnetic flux quanta, around
which the supercurrent flows in vortices. It is well known
[17] that changing the sign of the fourth-order term from
positive to negative changes the nature of the supercon-
ductor from type II to type I, from which all flux vortices
are excluded. The corresponding phenomenon of exclud-
ing all vortices from an n-atic vesicle appears impossible,
since the vortices are topologically imperative. There
is, in fact, an analogous exclusion of vortices, brought
about by a catastrophic change in the vesicle’s topol-
ogy, at which point the model breaks down, since the or-
der and deformation fields become large. In the analysis
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of type-II superconductors, there is a similar breakdown
of the model in the marginal limit. The criterion for a
“type-I” vesicle is now found by a stability analysis.
The free energy of Eq. (2.12) is a function of the (2n+1)
complex variables a,. It describes a stable system if F
is large at infinity in all directions in the phase space,
i.e., if F — 400 as any linear combination of the vari-
ables a, goes to infinity. Such a path to infinity may be
parametrized by a, = 7,=, where & — co. The constants
7np define a phase-space direction and may be kept finite,
without loss of generality, by the constraint Ep npnp = L.
Substituting into Eq. (2.12) and neglecting quantities of
less than fourth order in = yields the criterion for stabil-

ity

Z qrs”pnanns > 0 V{Th’}‘

p,q,™8

There is one particular set of constants 7, = 172 which
minimizes this sum. This set definitely exists, due to
the introduction of the constraint above. So the stability
criterion may be expressed in terms of this specific set of
constants, thus

> By 0 nng > 0.

p,q,7,8

But this set of constants which minimizes the sum,
subject to an overall magnitude constraint, is simply
the set of mean-field (MF) values of a,, multiplied by
some scale factor. Hence the criterion for stability is

> BE.s(apazaras)ur > 0, and may be written as
l+2)(—1 .
[ 1¥liaer > ax D> DD | [, Yras|

Let “malleability” u be defined as the quantity
n?C?%/ Auk, which is a measure of the ease with which
the order may deform the vesicle. The marginal case,
defining the crossover from type-II to type-I behavior, is
given by u = p., where

= [ 1Wliwan / D> s

2
Y| Y A2

Using symmetry arguments to establish the mean-field
configuration, p.(n) is found for the first two cases to be
p1e(1) = 9/4m, pe(2) = 125/15677. For vesicles this mal-
leable, the order parameter can deform the shape from a
sphere to an intrinsically flat cylinder or polyhedron, and
hence ordering is no longer frustrated by curvature. In
other words, the vesicle bursts. This interpretation may
not be the whole story, since the model breaks down as
this instability is approached, due to the large magni-
tudes of the fields ¥ and p. But it is clear that “ordi-
nary” or type-II behavior is exhibited when p < p. and
that a qualitatively different behavior, requiring a differ-
ent model, exists in vesicles whose malleability is greater

than this finite threshold.

Of course, use of the correct measure would give
us a stability criterion for K instead of k. According
to Eq. (2.10), the corresponding condition on s would
be slightly less severe than calculated here. In other
words, the effect of the nontrivial measure is to allow u
(= n?C?/Auk) to be taken a little above . before the
vesicle bursts. This is because ignoring the measure leads
to overcounting of the more deformed surfaces, and hence
makes us overcautious about bursting the vesicle.

It will be demonstrated later that ordering increases
and the region of temperature over which it arises sharp-
ens with increasing malleability. The relationship be-
tween the magnitude of this order and the degree of shape
deformation is now calculated.

IV. SHAPE CORRELATIONS

The original model for genus-zero vesicles with n-atic
order, used by Park et al. [11], embodied in Eqgs. (1.4)
and (1.5), has been reduced to the much simpler form
of Eq. (2.5) and all of the shape deformation degrees
of freedom have been integrated out, leaving the effec-
tive free energy in Eq. (2.12), with coefficients calculable
from Egs. (2.14) and (2.8). Park et al. solved the model
in the zero temperature limit (without fluctuations), and
thus were able to produce diagrams of the vesicle shapes,
from the fixed values of p;,, for each value of n. In reality
of course, no such fixed values exist, as the shapes and
vortex positions are in a constant state of flux, but ex-
pectation values of various moments of the variables py,,
and ap can be calculated. The variables p;,, have been
eliminated from the problem, so transformation equa-
tions must be found, relating their expectation values
to those of a,. This is done with the use of Eq. (2.7),
and integrals of the form

{(Ptm) = %/'D[T/J,P]sze-F

with the results

-1
(plm> = E’A—‘ Z'qulm(a;aq> (4.1)
U'pa
and
1
<pllm1p12m2> 4A—A Z Ygrlymy Vsplam,
11 12 p,q,7,8
61,1,0
x(a5a5a,0,) + ST (4)

where J,, is the Kronecker delta. The expression for
the second moment [Eq. (4.2)] is in two parts. The first
represents deformations of the vesicle due to interaction
with the order (i.e., ¥ is attempting to align, and ex-
pel Gaussian curvature, except at the vortices where it is
small). This part vanishes for higher spherical harmon-
ics (I > 2n), which do not couple to the lowest Landau
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levels. The second part represents uncorrelated deforma-
tions due to thermal excitation.

V. VALIDITY OF THE APPROXIMATIONS

Before proceeding further, an assessment is made of
the regimes of validity of the approximations employed
so far. The Ginzburg-Landau model carries with it an
implicit approximation. It contains a truncated series
expansion of the potential acting on . For this to be
valid, it is required that higher order terms in the expan-
sion are smaller than lower order terms. This condition is
satisfied at high temperature where ¢ is small. It is also
true at low temperature, provided that (pu. —p) 2 7~ 1.
Clearly the model is good far from “critical malleability,”
as stated above.

In using the lowest-Landau-level approximation, it is
assumed that the “ground-state” modes dominate the
order parameter field. Let the expectation value of
their coeflicients be denoted <a;0apo> and that of the
next lowest level be denoted <a;1‘1p1>' Then the ra-
tio (a} ap,)/(a} ap,) must be much less than unity.
An order-of-magnitude estimate of this quantity is found
from a high-temperature calculation to be ~ a/(ax — 7.),
from which it follows that |a| <« C/.A. So this approx-
imation is valid in the neighborhood of the mean-field
transition. Let its region of validity cover a large domain
in Figs. 1-4, so that all work presented here is correct.
This requires that C?/Au > (u. — p).

One final approximation must be justified. In deriv-
ing Eq. (2.5), a factor (1 + 2p) was dropped from the
line above, with the explanation that |¢|®2 ~ (r — r.),
so this term was of too high an order in small quanti-
ties. This is only apparent at low temperature, but the
derivation holds true at all temperatures for the follow-
ing reasons. Replacing this lost factor is equivalent to
multiplying Ypgim by 1+ 2(1 — =)/(1 + 2)(1 — 1). De-
manding that this is close to unity leads to the condition
|a| <« C/A, which is identical to the lowest-Landau-level
criterion.

It remains only to calculate expectation values of the
order-parameter field using Eq. (2.12). For n = 1 (vector
order) this is done in Sec. VI by making use of various
symmetries of the system. For other values of n, the
calculation cannot be performed exactly, so a further ap-
proximation will be introduced in Sec. VII, where the
problem is solved for general n. Either of these sections
may be read without reference to the other.

VI. NONPERTURBATIVE SOLUTION
FOR VECTOR ORDER

The n = 1 case (Sm-C order), solved at mean-field
level in [4], has just two vortices on the spherical surface,
and therefore has more symmetries than higher-n cases,
which can be exploited in the solution of the integrals of
Eq. (2.11).

A vesicle with vector order has two topologically re-

quired defects in the order parameter field. It is modeled
using three complex dynamical variables, giving six de-
grees of freedom, corresponding to the positions of the
two vortices in the two-dimensional space, plus an over-
all complex amplitude. Its energy is invariant under four
obvious symmetries. The three Euler angles which re-
late to the spatial orientation of the vesicle are clearly
irrelevant degrees of freedom, as is the complex phase of
the overall amplitude of the order parameter field, which
describes a global rotation of the orientation of in-plane
order. The two remaining relevant dynamical quantities
are the real amplitude of the order parameter and the
geodesic distance between the vortices. A transforma-
tion of variables is now performed on Egs. (2.11) and
(2.12) to make these symmetries explicit.

Let us reexpress the lowest-Landau-level order in the
form used in [11]:

2
12 0 (O i
P = :ZTI)O H lism 5 cos (f) eile—en)/2
k=1
0

— cos — sin o_k e—i(‘p—v»)/Z,
2 2

where (0, pr) is the position of the kth vortex in spher-
ical polar coordinates. The factor 4/12/A is convenient
for the definition of the overall complex amplitude ).
Equating this expression to Eq. (2.6) produces the trans-
formation equations:

ay = 2o cos %1 cos (%) e~ Hertea)/2 (6.1a)
0 (02 i 4en)/2
a_1 = 21 sin > sin > er\PrTe)/a (6.1b)
01 in (92 citer—wu)2
ag = —\/51/)0 cos 35 sin 5> etlv2—¢¥1
+ sin b cos (@_) ei(“"l""”‘)/z] , (6.1c)
2 2
which relate the six dynamical variables
(a—1,a* 4, a0,a4,a1,a}) to the new  variables

(Yo, ¥§, 01,02, 01, 92). These transformation equations
are now used to evaluate the terms of Eq. (2.12).
It is found that EP apa, = |10]%[3 + cosBycosf, +
sin 61 sin 03 cos(p;1 — w2)]. Let the positions of the vor-
tices be expressed in a coordinate-invariant manner, by
defining a unit vector mj to point from the center of
the vesicle towards the kth vortex. Then the cosine
of the angle subtended by the vortices at the centre
is (ny - m3). In spherical polar coordinates, this be-
comes 7 - My = cos @ cos bz + sin By sin O3 cos(p1 — p2).
So this coordinate-invariant description has arisen nat-
urally from the model, and the first term of Eq. (2.12)
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becomes

1
a Z ayap = alhol’(3 + ny - ny).
p=-1

Evaluation of the other terms of Eq. (2.12) is facilitated

e, * ok .A’U, 4 Cz
Z ﬂpzrsapaqa"aﬂ = 8 / [¥|%dQ — E™

K
p,q,",8
_ ultol*

154

As one would hope, all parts of the free energy are ex-
pressible in a coordinate-invariant way. To complete the
transformation of variables in Eq. (2.11), a Jacobian must
be evaluated. By calculation of a 6 x 6 determinant, it is
established from the transformation Eqs. (6.1) that

* *
’6(0’:1’0’—1’0’0’ aO,alyal)

= 1-ny-n
8(1/}5,1!)0701,02’5017902) ]1/)0' ( ! 2)

X sin 0, sin 5. (6.2)
Finally, let 1o = te’” so that t is a measure of the overall
real amplitude of the order parameter. The partition
function for smectic-C vesicles becomes

Z =2 / e FIEMIM 5 (1 ) dddpdt,

where d€2; = sin 0, dfrdpr. As noted above, the free en-
ergy is independent of the overall complex phase o, which
has been integrated out of the partition function, giving
rise to the factor 2m. Integrals over both vortex positions
still remain, although it is only their relative separation
that is relevant. Let x be a measure of this relative sep-
aration, being equal to the cosine of the angle subtended
by the vortices at the center of the. vesicle. Hence x
ranges in value from —1 when the vortices are antipodal
to +1 when they are coincident. This variable is conve-
niently introduced into the partition function, thus

Z= 27r/e“Feﬂ(t’n1'n2)t5(1 —ny - ng) dt dQ,dS2,
xd(ny - ne — x)dx.

Hence

1 oo
z=16r [ax [area—xe ™, (63

where Fef = A(x)t? + B(x)t* with A = a(3 + x) and
B = {9(13 + 10x + x?) — 4mpu(3 + x?)} /150>

The original set of six thermodynamic parameters

>

m=—2
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by noting that
3 2
11> = Slvol* [I(1 -7 - ma),
A k=1

where 7 is the unit vector in the direction of R. Hence

2

/ 2V d0

{913 + 10n; - ny + (1 - n2)?] — 4w [3 4 (n1 - m2)?]}.

{A,r,u,C, k} has been reduced to just three independent
combinations: (1) the shifted temperaturelike parameter
a =r+4mnC/A, (2) the malleability 4 = n2C?/Aux,
and (3) the scale parameter w = /A/u, with n = 1 in
this case.

Notice that there is more phase space available to vor-
tices at large separations than to vortices in close prox-
imity; a phenomenon arising from the phase space factor
(1 — x). One might naively predict that the thermal
expectation value of x would tend to zero in the limit
of high temperature since the vortices would spend as
much time close together as they would in opposite hemi-
spheres. But this is not the case. The factor (1—x) favors
large intervortex distances, and hence (x) must tend to
a finite, negative number at high temperature.

The double integral of Eq. (6.3) is soluble, the method
being given in Appendix A. The solution is

107r%u.12

Z = [ aw

¢ }, (6.4)
(27 — 2mp)

where f(z) =z e*"erfcz and erfc is the complementary
error function: erfcxz =1 — erfz. As ¢ — +oo, f(z) —
(1—1/222)//7 and as ¢ = —o0, f(z) — 2z e® .

From the expressions for the partition function in
Egs. (2.11) and (6.3), the following relations can be de-
duced:

—8;;2 =(B+x)t?) = <Za;ap>

=< pl¢|2d >

(6.5a)
5w3 0ln Z
- = ((13 + 10x + x*)t*), (6.5b)
15w2 8In Z
o on (B+x3)t*), (6.5¢)
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from which various correlators of the variables a, are
derived below. However, moments of x cannot be found
from Z alone and, as noted in Appendix A, it is not
easy to simply invent a field coupled to x to make this
possible.

Expectation values of powers of x are evaluated as fol-
lows. Returning to Eq. (6.3), the ¢ integral alone is easily
solved, giving

4
2

Z=2r (6.6)

/1(1 )B-%f'( 4 ) d
i X 2\/.§ X
where f'(z) is the derivative of the function f(z) defined
above. Hence the moments of x are given by

m 27r% ! m —g ! A
X" =— X (1-x)B™:f <ﬁ) dx,

which is a function of p and (aw) only. A graph of
(x) against aw is plotted in Fig. 2 for the cases of the
rigid sphere (¢ = 0), the marginal type-I-type-II vesicle
(# = pe), and an intermediate malleability (p = p./2).
As p increases, the vesicle becomes less rigid, and the
lower “kink” in the graph becomes sharper until, as
p — 9/4m, (x) tends to a singular function for which
the mean-field value (x) = —1 is correct for negative «,
as the above integrands are then singular for this value
of x. In fact, it is generally true that mean field the-
ory becomes increasingly accurate for negative a as u
approaches this critical value. The value p. = 9/47 is
in agreement with the critical malleability calculated in
Sec. III. For all p, at high temperature (i.e., in the large
ow limit), (x) tends to 5 — 8In2 =~ —0.545, which is a fi-

<>

4

5 10

oW

FIG. 2. Graph of the expectation value of the cosine of the
angle subtended at the vesicle’s center by the two vortices
(x) against the temperaturelike combination aw, for the cases

= 0 (the rigid sphere), p = p. (critical malleability), and
# = pc/2. The vortices are antipodal at low temperature,
and tend to be well separated even at high temperature due
to the shape of the phase space.

nite, negative number by virtue of the phase space factor
discussed above. Consider Eq. (6.6) once more. Writing
Z = [dxexp—V(x), we see that the effective intervor-
tex potential,

Ax)
24/B(x)

is repulsive. For this reason, (x) — —1 in the low-
temperature limit, as this is the antipodal configuration.
Note that V(x) is negatively dependent on u. So the
vortex-vortex repulsion is weakened when it is renormal-
ized by shape fluctuations.

Let us return to the problem of calculating expecta-
tion values from the partition function as expressed in
Eq. (6.4). Equations (6.5) may be used to find a certain
set of expectation values, but these are not in the form
required by Egs. (4.1) and (4.2) for evaluating expecta-
tion values of the vesicle’s shape. How are the correlators
<a;aq> and (a;a;a,a,,) to be deduced from the combina-
tions of x and ¢ produced by Egs. (6.5)? One can quickly
convince oneself, from the form of Eq. (2.12), with its
“momentum” conserving coupling, that (a;aq> = 0 for
p # g. Let Gy(t,x) be the mean value of aja,, when
thermally averaged over all configurations which have a
particular value of ¢ and x. This constrained average is
given by

V(x)=~lnf'< )+%lnB—1n(1—x)

g (t ) _ f a;aP e_FCﬁ 5(X - XO) 6(t - tO) Hq da;daq
PROXY T T e FT5(x — x0) 8(t — to) [1, dajda,

Using the Jacobian of Eq. (6.2) to change the variables
of integration, the constrained average is found to be

1
Gp(to; x0) = 32 /‘1;% §(n1 - m2 — x0)dQ21dQy.

And similarly, defining G,4(¢, X) to be given by thermally
averaging agapyaja, over all states of a given ¢ and x;, it
is found that

1 * *
gpq(tO,XO) = gz— /apapaqaq 6(111 Mgy — Xo)dQldﬂz,

all other fourth-order moments being zero. Having found
these constrained averages, the full thermal averages of
a’a, and ajapalag will result from averaging the func-
tions Gp(t, x) and Gpq(t, x) over ¢t and x. Hence, this is
a derivation of transformation equations between corre-
lators of a, and correlators of ¢ and x. From Egs. (6.5),

alay = t?(1+ cos ;) (1 + cos 83),
a*ia_1 =t*(1 — cos6;)(1 — cos b),

ayag = t*(1 — 2cos f; cos Oz + ny - n2).

So, in general, the integrals required are of the form
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J g(cosby,cos60z) 6(ny - ny — x)d2,dSY;, where g(z,y) is
some function. This integral then, is of a function of
the positions of two points on a unit sphere. The points
are each varied over the surface in such a way that their
separation remains constant. A general solution for such
integrals is calculated in Appendix B. The solution is

/g(cos 01,c0s03) 6(ny - 1y — x)dQ1dQ2

1 27 s
=4 d df —e 5 Y),
“/0 / t——sg(z,y)

1
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where

z=1s[(v/T+x++/1-x)cos¢
+(V1+x - /1-x)sing],
y = %s[(\/l—t—x——\/l—x)cos{
+(V1+x+y/1-x)sing].

Finally, the following correlation functions are found:

. 10lnZ
(apap) = (%) + 5(t*x) = "3 da vp

and

(a*ia_1a’ a_;) = (ajajaia;) = 2(a* ;a_ja}ao)

(aia_1ajar) = F(3(t*) + (t*x?)) =

o w3dlnZ

= Aajaragao) = F(13(t") + 10(t*x) + (t*x*)) = 5 —5 =
8_2. OlnZ
2 Ou ’

(agaoagao) = (a* ja_iajay) + %(a;ala;al).

(6.7)

The derivatives are performed on Eq. (6.4). The order parameter is found to behave as follows:

S { froran) -

! aw I ow

aw aw

15(9 — 4mp)

In the high-temperature limit, this tends to 3/aw and,
in the low-temperature limit, to the mean-field value of
—15aw/(18 — 8mwpu). So, as p increases towards the crit-
ical value of p. = 9/4m, the order parameter increases

e [ a4

4

30

X

Q

? M

) 2 2 4
o

FIG. 3. Graph of the normalized order parameter
(18—8mu)

T < f ]1/J2|dA> against the temperaturelike quantity
aw, for various values of the malleability u. As p ap-
proaches the critical value pu. = 9/4m, low-temperature or-
der increases, since the vesicle is intrinsically flattened, but
high-temperature order is independent of ;. Hence mean-field
theory becomes accurate in the marginal type-II-type-I limit,
b= pec.

)
T |/

Z(27 — 2mp)

\/ 15(9 — 4mp)
z

in magnitude at low temperature, but not at high tem-
perature, so the crossover between the two regimes be-
comes sharper, and mean-field theory becomes relatively
more accurate. Figure 3 is a graph of the quantity
(f |¢2]d.A> (18 — 87p) /15w, which is normalized for low
temperature, against aw, for various values of the mal-
leability p.

The shape expectation values can now be found. As
all of the correlators (a;ap> are equal, substituting for

(ke =)’ <|P20\2>
0.7}

p=p,

p=p,/2 0.1l

- 2 2 4
4 2 oo

FIG. 4. Graph of the mean-square amplitude of the Yy
mode of deformation multiplied by (u — u.)?k, against the
temperaturelike quantity ow, for the cases p = p./2 and
H = He-
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aka,) in Eq. (4.1) with (aXa,) §p4 gives
P9 p”P/ “Pq

<plm> - = <t26>Al <t2x> Z'Ypplm

But Y » Ypplm = 0. So all spherical harmonic amplitudes

have a mean value of zero, despite the distorting influ-
ence of the two topological defects in . This is because
all vortex positions have been thermally averaged. The
second moments of p are calculable, via Eq. (4.2), from
the fourth moments of the order parameter field. For in-
stance, the mean-square amplitude of the Y.} deformation
mode is found to obey

(o =m0 () - T (e )

& {lp20l?) = — + Eﬂaw
4

The constant % is due to thermal excitation, and the
other term arises from deformation by the in-plane order.

As p — p, this function goes to zero for positive «, and

45 aw
t0 Tosnz \ noop

tends to infinity as expected, since deformations become
large as the marginal type-I-type-II case is approached.
The function (g — p)?% {|p20|?), which is normalized for
low temperature, is plotted against aw in Fig. 4 for the
cases u = /2 and p = p..

Notice that all of the measurable quantities calculated
in this section are functions of x and the combination aw.
Hence, temperature, measured from the mean-field tran-
sition, scales as w™!. So “transitions” from low- to high-
temperature behavior become sharper for larger vesicles
(i.e., when A is large compared with u).

for negative a. The latter expression

VII. HARTREE-FOCK APPROXIMATION

Up to this point, the only approximation employed,
other than the small amplitude approximations implicit
in the Ginzburg-Landau model, has been the confinement
of the order parameter field 4 to a 2(2n + 1)-dimensional
phase space of the lowest eigenfunctions of the gradient
operator. A further approximation is now introduced,
in order to find expectation values of the m-atic order-
parameter field for all of the values of n under consider-
ation. The Hartree-Fock method will be used to produce
an infinite, but incomplete, perturbation expansion, valid
at high temperature — the opposite limit to that studied
in [11].

Firstly, the bare, or Gaussian propagator h is calcu-
lated from the quadratic Hamiltonian

Ho = Z a;ap
P
and is found to be independent of p,

(a%ag), = Jajage 0[], datda, _ %%
/0 = [ e #oT], daxda, a

aw _ aw
\/14—5(9—41”1)) f(\/%(27—-21ru.))

Writing the free energy as F' = Ho + H, where H; =
Ep ams B¥Fayazara,, the partition function becomes

Z =2 <e_ﬂl>o J

where Z, is the partition function for the quadratic
Hamiltonian and (), indicates a thermal average with
respect to this Hamiltonian. Hence, the renormalized
propagator (i.e., the full thermal average) can be written
as

(apape™"1)

hy = (apap) = (e 7y,

Taylor-expanding the exponentials and applying Wick’s
theorem, the terms in this formula may be represented
by connected, two-leg graphs of all possible topologies, in
which directed lines represent the bare propagators with
“momentum” p, and the four-point vertices each carry
a factor of B9, Momentum is conserved at the vertices,
since ;5. , vanishes if p + ¢ # r + s. The numerator is the
sum of all connected and disconnected two-leg graphs,
but the disconnected parts cancel with the denominator,
which is the sum of all zero-leg graphs. This explanation
is brief, since the Feynman-diagram expansion is given in
many standard texts [18].
Truncating the expansion at one-loop graphs yields

connected

E Bpgrs (at apa a,a, at>0
P,q,78

connected

= ht - Z 5pqrshthphq (atr + ats)((spréqs + 6ps(sq1')

pgrs

represented by
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where a double line represents a renormalized propaga-
tor.

The Hartree-Fock scheme renormalizes the bare prop-
agator with not just one loop diagram, but an infinity
of diagrams belonging to a certain topological family. In
particular, all those diagrams containing loops which do
not span a vertex. This approximation to the renormal-
ized propagator is defined implicitly by the equation

q

—_— ~
p

S +
P@p

which can be thought of as iteratively replacing ev-
ery bare propagator with the one-loop correction. The
scheme generates graphs with the correct counting fac-
tors [17]. This pictorial equation corresponds to

h (1 - 2h Z 'pagp T pqpq)h‘1> ’

a set of (2n + 1) second order coupled polynomial equa-
tions. These generate many spurious solutions But it is
observed from calculation of 87, that 3° (8;2.,+ 55 ,,)
is independent of p, and hence there is always a solution
for which the (2n + 1) quantities hp are equal, and pos-

itive. Henceforth, let TLP =h Vp. This physical solution
is given by the quadratic equation

<2Z( paap T pqpq)) + ah—1=0 Vp. (7.1)

The coefficient of k2 is now calculated.
First,

_2 8m2n2C?
> = = [ b 3 9360051~ srnict
l+2)(l—1)
ZZ
X [¢X,Y7dQ Y™ ¢k g dSd.
/p Pl /l ; qvq

The function Z:z_n |¢4|%, which appears twice in the
above equation, may be written as

(2n+1)! :‘—:« sin®" (—g) cos2(2n—r) (%)
4 r!(2n —r)! ’

=0

which is in the form of a binomial expansion of
sin?(£) 4+ cos?(4). It is therefore just a constant,
g [¢q(2 (2n+1) /4w, and hence orthogonal to all non-
s-wave spherical harmonics. It follows that

u
Z P9qp (n + %) ﬁ

Second, the sum - ;2 . is found. This also has two
parts, deriving from Eq (2.14), and the first has already
been calculated, since Bpgpq = Bpgqp- However, the order
of indices is relevant to the second part, which does not
vanish this time. There is no obvious method for simpli-
fying this part, so the integrals have been calculated as
required for each value of n of interest, with the result
that

u  8mn?C?
Z('quqp + Bpape) = (20 + 1)71 - —Ag—ﬁf(n)a
q
where f(1) = &, f(2) = 355, f(4) = 2221 and f(6) =
1732706752207. So the solution to Eq. (7.1) is
eh aw a?w?
w 2T s—+1 Vp, (7.2)

where

e=44/n+ 3 —16xf(n)p

As before, p is the malleability, n2C?/Aux, and w is
the scale parameter, /.4/u. From the definitions, the

magnitude of the order parameter is
/ [¥|PdA =" hy = (2n + 1)h.
P

In Fig. 5, a graph of eh/w against aw/e is plotted in
bold. Recall that « is a temperaturelike variable, mea-
sured with respect to the shifted mean-field transition
temperature r.. The figure shows that, within the lowest
Landau level, and Hartree-Fock approximation schemes,
the transition is removed. Instead, there is a gradual
change from a low-temperature region with a high de-
gree of order, to a poorly ordered high-temperature re-
gion, and this picture may be closer to the truth. Of
course, the Hartree-Fock approximation should only be
trusted at high temperature (aw/e > 1), as it is rig-
orously correct to O(u). At low temperature, Eq. (7.2)
tends asymptotically to h = —aw?/[n + § — 167 f(n)ul,
which is at variance with the correct mean-field ex-
pression h - —a /603, For n = 1, the former ex-
pression becomes —3aw?/(18 — 16mu) and the latter
—5aw?/(18 — 8mp). Nonetheless, the Hartree-Fock ex-
pression is a useful qualitative indicator of the system’s
behavior. For comparison, the correct, lowest-Landau-
level solution for n = 1, as calculated in Sec. V1, is plotted
as dashed lines in Fig. 5, for various values of the mal-
leability p. Note that some p dependance is contained
in the function e, which scales the axes of the figure. It
is apparent from the graphs that the Hartree-Fock solu-
tion is correct at high temperature, and fairly poor at low
temperature, except for the special case when p = 9/14m,
for which the asymptotic gradient is in agreement with
the mean-field value.
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eh/®
\ 20
v u=0
\/
p=0.1
¢
\ \
N
N 15
Hartree-Fock N
Solution

3
ow/e

FIG. 5. Graph of ETL/U) against aw/e, showing the nonsin-
gular progression from the low-temperature, highly ordered
state to the high-temperature, poorly ordered state. The
Hartree-Fock solution is shown as a continuous, bold line.
For comparison, the more accurate solution for n = 1, as cal-
culated nonperturbatively in Sec. VI, is shown dashed, for
various values of the malleability pu.

The ordinate of Fig. 5 is a measure of the order pa-
rameter, under some normalization, while the abscissae
is the temperature parameter « in units of ¢ /w. Hence it
is immediately apparent for the expression for w that the
crossover between high- and low-temperature regimes is
sharper on larger vesicles. The crossover apparently be-
comes infinitely sharp at a finite value of the malleabil-
ity, when u = p. = (2n + 1)/[32x f(n)]. Once again, it is
apparent, from reference to the correct values of u. cal-
culated in Sec. III, that the Hartree-Fock approximation
gives qualitatively correct but quantitatively inaccurate
results.

The shape expectation values can now be found. Sub-
stituting for <a;aq> in Eq. (4.1) with hépq gives

~h
(le) = 2_5—1 %:7pplm-

But ZP Yppim = 0. So all spherical harmonic amplitudes
have a mean value of zero, despite the distorting influ-
ence of the 2n topological defects in 1. This is because
all vortex positions have been thermally averaged. The
second moments are found, via Eq. (4.2), from the fourth
moments of the order parameter ﬁelc& From Wick’s the-
orem, (a;a;a,as> = (8pr8gs + Opsdgr)h?. So Eq. (4.2) be-

comes

; w2 81,0
<p11m1plzmz> - m Z’Yqu1m1’Y<1Plzmz+41‘2‘A‘Tml‘7‘n‘2‘.
172 pyg

)

1

For instance, the autocorrelation function (|pzo|?) for

n = 1 is evaluated as

1 Amp~

2 2
=—|—5h*+1).

(p20l®) = 15 (5w2 + )

Hence deformations increase with the magnitude of the

order parameter, as expected.

VIII. CONCLUSION

A simple expression has been derived for the coupling
between the lowest Landau levels of intrinsic n-atic or-
der and the shape of a genus-zero membrane. It has
been shown, within the lowest-Landau-level approxima-
tion scheme, that all spherical harmonic amplitudes of
deformations of such a vesicle have zero thermal average,
but that their mean squares have a contribution from de-
formation by the order, and a contribution from thermal
excitation. Only a finite number of spherical harmon-
ics are coupled to the lowest Landau levels of order. It
has been established that this order is capable of fun-
damentally altering, and perhaps bursting, a vesicle of
finite rigidity. This occurs at a critical value of the mal-
leability, for which the model is strongly analogous to
that of a marginal type-I-type-II superconductor. As
this critical value is approached, mean-field theory be-
comes increasingly accurate. The model for fluid vesicles
with vector order has been solved exactly, using no fur-
ther approximations, and the general result is established
that the crossover from high- to low-temperature behav-
ior becomes sharper for larger vesicles. The solution also
confirms that mean-field theory becomes increasingly ac-
curate as the critical malleability is approached. The
counterintuitive result is ascertained that the two topo-
logical defects in the order are more likely to be found
far apart than close together, even at high temperature,
as the phase space volume element increases with defect
separation. The Hartree-Fock approximation is valid at
high temperature and significantly inaccurate at low tem-
perature, but exhibits qualitatively correct behavior.
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APPENDIX A: SOLUTION OF THE PARTITION
FUNCTION DOUBLE INTEGRAL

The integral required in Eq. (6.3) is

1 oo
= / dx(1 - x) / them(AHB gy,
1 0

where A = a(x + 3) and B = b(x2 + 10x + 13) — c(x® +
3). Expanding the first exponential as a sum and using
Io t2m+5e=Btl gy — 1"(924'—3)/43%ﬂ gives
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Lo (o)™ (m+3 /1 (I-x)Kx+3)™
I=-= E r dx.
4 &= m! ( 2 ) 1 B X
Using the indefinite integral

/1 (1-x)(x+ 3)2"'1dX (84 x™

- t
Bt 2n(2b + 30)Bn O

-1

gives
o1 Camey

4 £ (m +1)!(2b + 3c)

8 [(b—i) =20 (ﬁbzi C)i] '

The exact form of the function B(x) is crucial to the sol-
ubility of the indefinite integral above. In particular, it
is not easy to invent new fields coupled to the dynamical
variables to aid computation of their expectation values.
Now, applying the identity (Z)!/m! = /7 /2™(™51)! al-
lows the infinite sum to be separated into the standard
forms of exponentials and confluent hypergeometric func-

tions, thus
1 [ 2/7

T=Te@+30) | Vo-co® <Z(17—_>)
e (a=)

8a 3 a?
* (6b—c> 1 (1’5’ 6b—c>
2a 3 a?
(=) ()]

The identities Fi(a,c;z) = e®Fi(c —a,c;—z) and
erf (z) = %Jﬂ(%, 2; —x?) are used [19] to give the re-
sult
I= VT [.r e®’ erfc :1:] vabsae
4a(2b + 3c) o= e

where erfc is the complementary error function: erfcz =
1 — erfz.

APPENDIX B: SOLUTION OF THE
CONSTRAINED, TWO-POINT,
SPHERICAL SURFACE INTEGRAL

The integrals required for thermally averaging combi-
nations of a, over states of a given t and x are of the
form

J = /g(COS gl,COS 02) (5(n1 *MNgy — X)dQldﬂz,

where g(z,y) is some function. The integral is over the
positions of two points on a unit sphere. The unit vectors
n, and mq point from the center of the sphere to the
points, each of which is varied over the surface, in such
a way that n; - n, has the constant value x. In spherical
polar coordinates, the solid angle elements are dQj =
d(cos 0x)dyy. Hence

1 1
J=/ d(cos@l)] d(cos 83) g(cos 81, cos 62)
1

—1 —

27 27
X / dps d(p1 — p2) 6( cos B cos B2 + sin 6, sin B3 cos(p1 — w2) — X)
0 0

and

27
/ dp 8(cos by cos 2 + sinby sinfacosp — x) = 2/
0

18in 0 sin 03 sin ¢

d(cos ¢) d(cos 01 cos B3 + sin by sin B3 cos ¢ — x)

2
x—cos 01 cos 02
26([ sin 0, sin 02 ] >

where O(z) is the Heaviside step function, ©(z < 0) =0,
O(z > 0) = 1. Now, setting z = cosf; and y = cosf;
gives

I — an ldw 1d g(z,y)
4 /—1 ~1 y\/(l—wz)(l —y2) — (x — zy)?
(x —=y)?

x© (m)-

b
\/sin2 0 sin2 65 — (x — cos 01 cos 62)2

[

The region of the zy plane for which the Heaviside func-
tion has a positive argument is the interior of an ellipse,
contained within the unit square of integration. The
transformation

2z =(vV1+x++V/1-x)u+(/1+x—V1-x)v,
2y=(V1+x—V1-x)u+(/1+x+vV1-x),

with Jacobian
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oNz,y) _ /3
27— /1 — 2
O(u,v) X
maps the ellipse onto a unit circle in the uv plane, thus
1 V1—u2
J = 471'/ du/ de.
-1 Jovitaz V1 —u?—0?

Hence a final transformation to polar coordinates (s,§)
gives

1 2w s
J = 47r/ds df ——g(z,y),
0 0 1-—s2

with

o = Lal(/TT X+ /1= X) cose
+(v/14+ x — /1= x)sin¢]

38(vV1+x — v/1—x)cos¢
+(v/1+x+4/1— x)siné].

So, for instance,

@
Il

/6(111 *Ny — X) dQldQZ = 871'2
and

2
/cos 01 cos020(ny - g — x) dQ21dQp = AB_%X
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